
C H A P T E R 1
Java 2 Micro

Edition Basics

1

The Mobile Information Device Profile (MIDP) is just one part of a larger initiative to
make Java work on small computing devices, the Java 2 Micro Edition (J2ME). Before
starting our exploration of the MIDP, we need to step back and understand what J2ME
is and how it evolved. This chapter provides you with a broad overview of J2ME and the
MIDP’s place in it, including the Connected Limited Device Configuration on which it is
based. For a more comprehensive look at J2ME, refer to Eric Giguère’s Java 2 Micro

Edition, also part of John Wiley & Sons’ Professional Developer’s Guide series.

A Very Brief History of Java

Java’s first incarnation was Oak, a language developed at Sun Microsystems for program-
ming consumer devices. You can still find information about Oak on Sun’s Web site by
searching for references to the Green Project. Oak was ahead of its time, however, and
instead became the more general-purpose language we now know as Java.

The Architecture of Java

Architecturally, Java has not changed much since its first release. A Java compiler trans-
forms the Java programming language into a set of Java bytecodes. Bytecodes are instruc-
tions for an abstract computing machine referred to as a virtual machine, or VM for
short. A Java VM, sometimes referred to as a JVM, interprets the Java bytecodes in order
to run a Java program. A Java VM is thus often called an interpreter, although Java code
can also be compiled straight into native machine binary code. Whether interpreted or
compiled, Java bytecode execution must follow the steps and semantics described in The

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 1

2 C H A P T E R 1

Java Virtual Machine Specification (JVMS), or else you cannot call it Java. (Java is a
trademark of Sun Microsystems, and anyone wishing to implement a Java runtime envi-
ronment and call it such must obtain permission from Sun and pass a comprehensive set
of compatibility tests.) The syntax and semantics of the Java language itself are described
in a separate document entitled The Java Language Specification (JLS).

One of Java’s inherent strengths is its portability—the capability to take a Java program
and execute it on various operating systems without having to recompile or otherwise
retarget the program for each operating system. This portability is achieved in several
ways. First, both the JLS and the JVMS ensure that the types, bytecodes, and encodings
used in Java are defined independently of the underlying operating system. Second, the
binary encoding of a Java class—how the bytecodes are packaged at a class level—is
defined by the JVMS, also in a machine-independent fashion. Third, a core set of runtime
classes (and an associated set of platform-specific native code) abstract the interface
between a Java program and the underlying operating system.

Java is also known for its security infrastructure. From the verification of class files to
ensure the integrity of the generated bytecode to the use of class loaders and security
managers, Java makes it possible to securely and safely download and execute third-
party code of untrusted origin. This capability to download code across a network was
arguably Java’s most important feature when it was first developed and is being re-
emphasized today with initiatives such as J2ME and Jini.

Unless the operating system is written in Java, of course, there has to be a way for Java
programs to access the features of the native operating system. Java programs can call
native code in a controlled manner through a native code interface. The current form of
the native code interface is referred to as the Java Native Interface, or JNI for short. User-
developed native code is rarely found, however, and can hamper portability and security.

Early Java
The first official release of Java outside Sun was called Java 1.0.2. The 1.0.2 actually refers
to the version of the Java Development Kit (JDK) that included everything needed to
develop and run Java programs on the Windows and Solaris operating systems. Even
today, you will still refer to Java by the JDK version, although Sun now refers to it as the
Java Software Development Kit (JSDK) and has separated the runtime-only portions of

Reading the Specifications Online

Although they are available in hard copy as well, both The Java Language
Specification and The Java Virtual Machine Specification can be read online from
Sun’s Web site. The JVMS is at http://java.sun.com/docs/books/vmspec/
index.html, and the JLS is at http://java.sun.com/docs/books/jls/
index.html.

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 2

Java 2 Micro Edition Basics 3

the JDK into a separate Java Run-Time Environment (JRE). Although strictly speaking,
the JRE did not actually appear until version 1.1 of the JDK was released, we will use the
term generically to refer to the runtime part of any Java platform.

Java 1.0.2 was notable primarily for two things. First, it defined an Abstract Windowing

Toolkit (AWT) for the creation of portable graphical user interfaces (GUIs). Second, it
defined applets, a way in which Web browsers use an embedded Java VM to safely run
applications downloaded on the fly from untrusted Web sites.

While 1.0.2 was a good first attempt, it had a number of deficiencies, such as limited control
over the user interface, a lack of internationalization and localization capabilities, and a
restrictive security model. The next major release, Java 1.1, addressed a number of these
issues and added many new features. The new features included a listener-based event
model, object serialization, remote method invocation (RMI), just-in-time (JIT) compiling,
and inner classes. There were also some optional pieces, like a new user interface toolkit
called Swing (a set of enhanced AWT components) and a set of collections classes with
more advanced data structures than those found in the java.util package.

Java 2
As work progressed within Sun Microsystems on Java 1.2, a decision was made to
rebrand Java and to make major changes in the way Java was packaged and licensed.
Java 1.2 became simply Java 2, although the JDK and JRE versions remained at 1.2. More
importantly, however, the Java platform was split into three editions:

�� Java 2 Standard Edition (J2SE) is for conventional desktop application
development. Swing has been folded into the core Java classes, and a number of
new classes have been added to enhance application development even more than
what Java 1.1 offered.

�� Java 2 Enterprise Edition (J2EE) is a superset of J2SE that is geared toward
enterprise programming with an emphasis on server-side development using
Enterprise JavaBeans (EJBs), web applications (servlets and JavaServer Pages),
CORBA, and Extensible Markup Language (XML).

�� Java 2 Micro Edition (J2ME) is a subset of J2SE that is geared toward embedded
and handheld devices that cannot support a full J2SE implementation.

Although there is a certain amount of overlap, each edition targets a different kind of appli-
cation developer. The sheer number of classes available to J2EE programmers—and the
complexities of using those classes—stands in stark contrast to the much smaller set of
classes available to J2ME programmers. On the other hand, J2ME programmers have severe
memory and resource constraints to handle. Splitting Java 2 into three editions makes it pos-
sible for Java to evolve in different directions while staying true to the spirit of the language.

The Java Community Process
Although Sun is the ultimate authority for the Java platform, much of its work in defin-
ing and extending the platform is done through the auspices of the Java Community

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 3

4 C H A P T E R 1

Process (JCP). The JCP enables corporations and individuals to participate in the defi-
nition and revision of different parts of the Java platform. The process is fairly simple:
A specification request (known as a JSR) is submitted with a specific proposal to
extend the Java platform. If the JSR is accepted for development, an Expert Group

(EG) is formed to define a formal specification for the JSR. The Expert Group consists
of JCP members who have expertise in the area covered by the JSR and who volunteer
their time and effort to develop the proposal with the interests of the larger Java com-
munity in mind. When ready, the specification is published for review by other JCP
members and by the general public. The specification is revised based on reviewer
comments before being voted on and accepted as a formal Java standard.

All J2ME standards are defined by using the Java Community Process. For more informa-
tion about the JCP, see the JCP Web site at www.jcp.org. From there, you can get a list
of all the JSRs that have been defined or are in the process of being defined, including the
ones mentioned in this book.

Java 2 Micro Edition

J2ME enables Java applications to run on small, resource-constrained computing devices.
It does not define a new language; rather, it adapts existing Java technology for handheld
and embedded devices. Compatibility with J2SE is maintained wherever feasible. In fact,
J2ME removes the parts of J2SE that are not applicable to constrained devices, such as
AWT and other features. In this section, we briefly describe the key components of J2ME:
configurations and profiles.

Configurations
A configuration defines the basic J2ME runtime environment. This environment includes
the virtual machine, which can be more limited than the VM used by J2SE, and a set of
core classes derived primarily from J2SE. The key point is that each configuration is
geared toward a specific family of devices with similar capabilities.

Currently, two configurations are defined: the Connected Device Configuration (CDC)
and the Connected Limited Device Configuration (CLDC). Both target connected
devices—devices with network connectivity—whether it is a high-speed fixed link or a
slow-speed wireless link. The CLDC targets the really small devices: cellular telephones,
personal digital assistants (PDAs), and interactive pagers. As a group, these devices
have important power, memory, and network bandwidth restrictions that directly affect
the kind of Java applications that they can support. The CDC, on the other hand, targets
devices that are less restricted, such as set-top boxes (devices that provide network-
based computing features through a television) and car navigation systems. The line
between the CDC and the CLDC is not distinct, because some high-end cellular tele-
phones and PDAs can meet the requirements of the CDC—forcing the device manufac-
turer (the most likely provider of a Java runtime environment) to decide which
configuration to support.

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 4

Java 2 Micro Edition Basics 5

Note that the CDC is a superset of the CLDC: The CDC includes all of the classes defined
by the CLDC, including any new ones that are not part of J2SE. The CDC includes many
more core J2SE classes than the CLDC, however, which makes the CDC a more familiar
and comfortable environment for experienced Java programmers. For the purposes of this
book, though, you will have to learn to live within the restrictions imposed by the CLDC.

Perhaps the biggest difference between the CDC and the CLDC is that the former requires
a full-featured Java virtual machine that is compliant with the one in J2SE. In other words,
the CDC VM must support all the advanced features of a J2SE VM, including low-level
debugging and native programming interfaces. Sun has released a new Java VM, the Com-

pact VM (CVM), for this purpose—it is more portable and efficient than the standard VM.

Profiles
A profile extends a configuration, adding domain-specific classes to the core set of
classes. In other words, profiles provide classes that are geared toward specific uses of
devices and that provide functionality missing from the base configuration—things such
as user interface classes, persistence mechanisms, and so on. Profiles are the double-
edged sword of J2ME: While they provide important and necessary functionality, not
every device will support every profile. In Japan, for example, NTT DoCoMo has released
a number of Java-enabled cellular telephones based on the CLDC but with their own pro-
prietary profile. Applications written for these devices will not work on cellular tele-
phones that support the MIDP.

A number of profiles are defined or are in development. Besides the MIDP, which is based
on the CLDC (we will discuss this topic in detail in the next chapter), the following pro-
files are or will be available:

�� A Personal Digital Assistant Profile (PDAP) that extends the CLDC to take
advantage of the extended capabilities of PDAs when compared to the simpler
devices targeted by the MIDP.

�� A Foundation Profile that adds additional J2SE classes to the CDC but no user
interface classes. It acts as a foundation for building other profiles.

What about Java Card and EmbeddedJava?

J2ME is not Sun’s first foray into the handheld and embedded device space.
Although PersonalJava is being folded into J2ME as a CDC profile, what happens
to Java Card and EmbeddedJava? Nothing; they remain as they are. Java Card
adapts Java for use on smart cards, a very specialized environment that is not
suitable for general-purpose programming. EmbeddedJava is more about
licensing than defining a portable Java subset: EmbeddedJava licensees can
pretty much choose which features of Java they want to support in their devices.
The catch is that they cannot expose those features for use by a third party—only
their own developers can write the applications that run on the device.

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 5

6 C H A P T E R 1

�� A Personal Profile that redefines PersonalJava as a J2ME profile. The Personal
Profile extends the Foundation Profile.

�� An RMI Profile that adds RMI support to the CDC.

Multiple profiles can exist within the same configuration. Profiles can also build on each
other—for example, the Personal Profile is an extension of the Foundation Profile.
Expect more profiles to be developed as J2ME evolves.

The Connected Limited Device Configuration

To understand the MIDP, you must first understand the CLDC, the most minimalist of the
J2ME implementations. The CLDC is defined by JSR-30 in the Java Community Process.
For more information on the CLDC, refer to Sun’s Web site at http://java.sun.
com/products/cldc.

Requirements
The CLDC does not require many resources. It is meant to run on devices with 128K or
more of non-volatile (persistent) memory and 32K or more of volatile memory. CLDC
devices are required to have some kind of network connection (hence the term connected

device), although it might be an intermittent, slow-speed connection. The configuration is
for limited devices (devices that have severe limits on their computational power and
battery life).

The CLDC defines a number of requirements for the Java environment. The first require-
ment is for full support of the Java language, except for a few differences. These differ-
ences are as follows:

�� No floating point support. Floating point types or constants are not supported,
and neither are the core J2SE classes that deal specifically with floating point
values—classes such as java.lang.Float and java.lang.Double. Methods
taking or returning floating point values are removed from all classes.

�� No object finalization. To simplify the garbage collector’s task, the finalize
method is removed from java.lang.Object. The garbage collector will simply
reclaim any unreferenced object. This action prevents unreferenced objects from
“resurrecting” themselves and causing extra bookkeeping work for the garbage
collector.

�� Runtime errors are handled in an implementation-dependent fashion.

Runtime errors are exceptions that are subclasses of java.lang.Error thrown
by the virtual machine itself. The CLDC only defines three of these error classes:
java.lang.Error, java.lang.OutOfMemoryError, and java.lang.
VirtualMachineError. Any other error condition is handled by the VM in an

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 6

Java 2 Micro Edition Basics 7

implementation-dependent manner, which usually means terminating the
application.

The second requirement is for full virtual machine support, except for these few differ-
ences:

�� No floating point support. CLDC devices might have no native support for
floating point operations. As such, the VM does not support floating point
constants or any of the bytecodes that involve floating point types.

�� No finalization and no weak references. These are left out to simplify the
garbage-collection algorithms.

�� No support for JNI or reflection or any low-level interfaces that depend on

them. In particular, there is no support for object serialization in the CLDC. Note
that a VM can have a native interface, a debugging interface, or a profiling interface,
but it is not required and it does not have to be a standard J2SE interface.

�� No thread groups or dameon thread. Threads are supported, but thread groups
or dameon threads are not. The VM can choose to implement threads by relying on
the operating system or by performing its own context switching.

�� No application-defined class loaders. An application cannot influence how
classes are loaded. Only the runtime system can define and provide class loaders.

�� Implementation-defined error handling. As mentioned, any runtime errors that
are not specifically defined by the CLDC are handled in an implementation-specific
manner.

�� Class verification is done differently. The standard class verification process
is too computationally expensive, so an alternate process was defined. The
alternate process moves most of the verification work to a separate
preverification step that occurs on a desktop or server computer and not on the
device. The preverified class files are then processed on the device using a
second, much simpler kind of verification that merely validates the results of the
preverification step.

The third requirement is that any classes that are drawn or “inherited” from J2SE must be
subsets of the J2SE 1.3 classes. Methods can be omitted, but no new public methods or
data members can be added. Upward compatibility is of paramount importance.

The fourth requirement is that classes defined by the CLDC and its profiles are in the
javax.microedition package or its subpackages, which makes it easy to identify the
classes that are specific to the CLDC.

The final requirement is for minimal internationalization support. The CLDC provides
basic support for converting byte streams to Unicode and back by using at least one
character encoding. The CLDC does not address localization issues, such as how to dis-
play dates, times, currencies, and other locale-specific behaviors.

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 7

8 C H A P T E R 1

Supported J2SE Classes
The CLDC includes classes and interfaces drawn from these three J2SE packages:

�� java.lang

�� java.io

�� java.util

As you can see, most J2SE classes are excluded, including those from useful packages such
as java.awt, java.net, and java.sql. Even the packages that are included are missing
classes, and many of those classes are missing methods. A listing of supported non-excep-
tion classes is found in Table 1.1. For a complete list of what is actually included in each class
and which exceptions are available, refer to the class reference in Appendix A.

Table 1.1 Non-Exception J2SE 1.3 Classes Included in the CLDC

PACKAGE CLASS

java.lang Boolean

Byte

Character

Class

Integer

Long

Math

Object

Runnable

Runtime

String

StringBuffer

System

Thread

Throwable

java.io ByteArrayInputStream

ByteArrayOutputStream

DataInput

DataInputStream

DataOutput

DataOutputStream

InputStream

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 8

Java 2 Micro Edition Basics 9

The Generic Connection Framework
Apart from the classes discussed, the only other classes defined by the CLDC are the
classes that make up the Generic Connection Framework, or GCF for short. The GCF
abstracts the concepts of files, sockets, HTTP requests and other input/output mecha-
nisms into a simpler set of classes than those defined by J2SE. In other words, the GCF is
meant to provide the same functionality as classes from the java.io and java.net
packages without requiring specific capabilities from a device. Note that the CLDC does,
in fact, include some classes from the java.io package, but only the classes that do not
depend on the capabilities of the underlying operating system. The GCF does not replace
these basic input/output classes and depends on and uses classes such as
java.io.InputStream and java.io.OutputStream. One way to look at the GCF
is as a framework for building communications drivers, much like JDBC in J2SE is a
framework for building database drivers.

With the GCF, all communication is abstracted through a set of well-defined interfaces.
Instead of creating a specific class of communication objects like java.io.File or
java.net.Socket, the application asks the GCF to create a connection that uses a spe-
cific protocol. The protocol can be a formal protocol, such as Hypertext Transfer Proto-

col (HTTP), or a reference to a low-level storage or communication facility like a
filesystem or a wireless packet transceiver. The protocol is passed in as part of a Univer-

sal Resource Identifier (URI) that specifies other important information that is relevant
to the protocol, such as the name of a host to connect to or the name of a file on the

Table 1.1 Continued

PACKAGE CLASS

InputStreamReader

OutputStream

OutputStreamWriter

PrintStream

Reader

Writer

java.util Calendar

Date

Enumeration

Hashtable

Random

Stack

Time

Vector

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 9

10 C H A P T E R 1

filesystem. The GCF then determines whether the implementation supports that protocol
and returns an appropriate interface if it does. The application then uses this interface to
interact with the implementation in sending or receiving data.

The classes defined by the GCF are listed in Table 1.2. All the classes are defined as part
of the javax.microedition.io package. An application uses one of the static Con-
nector.open methods to obtain an object that implements the Connection interface
or one of its subinterfaces. The application then uses the methods defined by the inter-
face to read and/or write data. Most of the interfaces work on stream-based data and
therefore expose input or output streams.

All told, there are six subinterfaces of Connection defined. The Input-Conection
and OutputConnection interfaces are for one-way stream connections. The Stream-
Connection interface is for two-way stream connections—it extends both InputCon-
nection and OutputConnection. The Content-Connection interface extends
StreamConnection with methods for determining information about the content itself
such as its type and length. The DatagramConnection interface is for sending and
receiving packet data. Finally, the StreamConnectionNotifier interface is for imple-
menting server-side connections where the application must wait for a client to connect
to it. The interface hierarchy is shown in Figure 1.1.

Note that while the CLDC defines the Generic Connection Framework, it does not man-

date support for any particular protocol. This concept has confused more than one
novice J2ME programmer, because there is a reference implementation of the CLDC
available from Sun Microsystems that includes support for a number of communication
protocols. Those protocols are there strictly as examples, though. Protocol support is
defined at the profile level or as device-specific extensions.

We will look at the GCF in more detail in Chapter 6, “Network Communication,” when we
discuss networking and the MIDP.

Table 1.2 Generic Connection Framework

PACKAGE CLASSES/INTERFACES

javax.microedition.io Connection

ConnectionNotFoundException

Connector

ContentConnection

Datagram

DatagramConnection

InputConnection

OutputConnection

StreamConnection

StreamConnectionNotifier

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 10

Java 2 Micro Edition Basics 11

Summary

In this chapter, we have taken a short history lesson on Java and learned about Java 2
Micro Edition in general and the Connected Limited Device Configuration more specifi-
cally. We are now ready to take our first look at the Mobile Information Device Profile.

StreamConnectionNotifierDatagramConnection OutputConnection

Connection

InputConnection

StreamConnection

ContentConnection

Figure 1.1 The GCF connection hierarchy.

70899_Ortiz_CH01I 10/30/2001 3:30 PM Page 11

