TWO

Java 2
Micro Edition

(J2ME)
Specifications







CHAPTER

Java 2 Micro
Edition (J2ME)

A

t the JavaOne Conference in June 1999, Sun Microsystems announced
anew edition of the Java 2 platform: the Java 2 Micro Edition (J2ME).
The purpose of the Micro Edition is to enable Java applications to run
on the small computing devices that we discussed in the first chapter.
Although the J2ME announcement was interesting, what really caused
a stir was the preliminary release of a new Java virtual machine (JVM)
that could run simple Java programs on Palm devices. The initial
frenzy, however, was soon tempered by the need to develop formal
specifications for J2ME and to finish the work on the new virtual
machine. It would take almost a year for the first production release of
J2ME to become a reality, however.

In this chapter, we discuss what JZME is and what it is not. We look
closely at one of its key pieces, a new virtual machine optimized for
small devices called the KVM. We also look at how other related pieces
of Java technology—things such as EmbeddedJava and Personal-
Java—fit into the J2ME puzzle.

77




78

CHAPTER 4

Introducing the Micro Edition

Sun Microsystems’ Web site describes J2ME this way:

... Java 2 Platform, Micro Edition is a highly optimized Java runtime environment tar-
geting a wide range of consumer products, including pagers, cellular phones, screen-
phones, digital set-top boxes and car navigation systems.

The key phrase from this description is “highly optimized Java runtime
environment.” We must emphasize that J2ME does not define a new
kind of Java but instead adapts Java for consumer products that incor-
porate or are based on some kind of small computing device. A Java
application written for the Micro Edition will also work with the Stan-
dard Edition and even the Enterprise Edition, assuming the APIs it uses
are available in each edition. There are constraints, but the architecture
of Java never changes. Writing Java code that runs unchanged in all
three editions is possible. Cross-edition portability is not normally a
requirement, however, because what you are really interested in is
cross-device portability. In other words, will the application work cor-
rectly on a specific set or family of devices? Let’s look at some of the
key features of J2ME and see why the answer to this question is a sim-
ple but resounding yes.

A New Virtual Machine

The Java 2 Standard Edition (J2SE) platform currently supports two
different virtual machines: the so-called classic virtual machine and the
newer HotSpot virtual machine. Swapping out the classic virtual
machine and replacing it with a HotSpot virtual machine gives J2SE
programs an immediate and measurable performance boost without
making any other changes to the runtime environment. If a new virtual
machine can be designed from the ground up in order to boost perfor-
mance, why not design a virtual machine to run in a constrained envi-
ronment? That is exactly what J2ME does with the KVM, which is short
for Kuaui VM (an early name).

The KVM is a completely new implementation of a Java virtual
machine, an implementation optimized for use on small devices. The
KVM accepts the same set of bytecodes (with a few minor exceptions)
and the same class-file format that the classic virtual machine does. We
will discuss the KVM in greater detail shortly.



Java 2 Micro Edition (J2ME) 79

You should understand that the Micro Edition is more than just the
KVM. In fact, the classic virtual machine can still be used with J2ME.
Thus, JZME supports two different virtual machines:

= The classic virtual machine for 32-bit architectures and large
amounts of memory

= The KVM for 16-bit or 32-bit architectures with limited amounts of
memory

Possibly, future versions of J2ME will support other virtual machines as
well.

New and Changed Classes

As you might imagine, one of the keys to getting Java to run on a small
device is to reduce the size of the runtime classes installed with the
runtime environment. The Micro Edition performs this task by remov-
ing unnecessary classes to form a new set of core classes. A similar
pruning occurs within the classes themselves (unnecessary or dupli-
cate methods are removed). What is left is a true subset of the J2SE
runtime classes.

Specific implementations of the Micro Edition are also free to ROMize
the core classes. In other words, any classes that are provided as part
of the basic runtime environment can be stored by using the virtual
machine’s internal format instead of the normal class-file format. The
virtual machine must still have the capacity to read user-defined classes
in the normal class-file format, however.

A stripped-down runtime is not particularly useful if there is no way to
interact with the user or with other external devices. J2ME also aug-
ments the runtime environment by defining new classes that are suit-
able for smaller devices. Some of these classes replace similar classes
in J2SE while others provide new functionality not found in the other
editions.

Configurations and Profiles

Realizing that the one-size-fits-all principle used with the Standard Edi-
tion does not work on small devices, the Micro Edition uses configura-
tions and profiles to customize the Java runtime environment.




80

CHAPTER 4

A configuration defines the basic J2ME runtime environment as a virtual
machine and a set of core classes that run on a family of devices that
have similar capabilities. Two configurations are currently defined: the
Connected Limited Device Configuration (CLDC) and the Connected
Device Configuration (CDC), both of which we will discuss in the next
chapter. Each configuration provides a minimal set of features that all
devices in the configuration must support. The CDC uses the classic vir-
tual machine while the CLDC uses the KVM (as shown in Figure 4.1).

A profile adds domain-specific classes to a particular J2ME configura-
tion. Unlike configurations, which are device-oriented, profiles are more
application-oriented. They provide classes that are geared toward spe-
cific kinds of applications (or more accurately, specific uses of devices).
Examples are user interface classes, persistence mechanisms, messag-
ing infrastructures, and so on. Figure 4.2 shows how profiles and config-
urations work together in order to provide a complete Java runtime
environment. Several profiles have been defined or are in the process of
being defined, and we will discuss them in Chapter 6, “Profiles.”

Java application

KVM + CLDC

APls Native APIs

Java application

Native OS

ClassicVM +

CDC APIs Native APIs

Device

Native OS

Connected, Limited Device
Configuration (CLDC)

Figure 4.1 The two J2ME configurations.

Device

Java application

Profile

Configuration

Native OS

Device

Figure 4.2 Profiles.

Connected Device
Configuration (CDC)




Java 2 Micro Edition (J2ME) 81

Building Blocks

As this book was being written, a revision of J2ME was being developed under
the Java Community Process that would replace configurations with building
blocks. A building block subsets classes from J2SE or J2EE for use with J2ME.
Individual profiles would include appropriate building blocks in order to share
more functionality with the J2SE runtime classes. The proposal, JSR-68, states
that over time, the concept of a configuration will be replaced with building
blocks but that profiles will still exist. Because building blocks are not yet part of
an approved specification, this book uses the term configuration.

Profiles are the double-edged sword of J2ME. They define important
and necessary functionalities, but they also limit your application’s
portability to the other editions of Java or even to other profiles. Such
restrictions are not unexpected or unreasonable, however, because the
need to run a single application on all possible platforms is quite rare.
Some would argue that it is not even possible to do right. What J2ME
enables you do to, however, is use Java for all of the pieces of your
application—from the database server (more and more databases sup-
port Java directly as a programming language) through the middle tier
and down to the smaller devices. Although no Java developer really
wants another set of application programming interfaces (APIs) to
learn (it is hard enough keeping track of all of the new classes that are
added to the Standard Edition), profiles keep the developer using a
familiar language and familiar development tools. This is a key feature
of all three editions of Java.

The KVM

Many perceive the KVM to be the heart of the Micro Edition. Strictly
speaking, of course, this situation is not the case. The KVM is one of
two virtual machines provided by Sun Microsystems for use with JZME.
Also, while most implementations of J2ZME will use or port the Sun vir-
tual machines, vendors are also free to implement their own virtual
machines as long as they adhere to the J2ZME specifications and pass
Sun’s compatibility tests. RIM’s BlackBerry system, which we discuss in



82

CHAPTER 4

Chapter 11 (“Java for BlackBerry Wireless Handhelds”), uses its own
implementation, for example.

If the KVM is not the heart of J2ME, however, it is certainly an impor-
tant part of it. As mentioned, when Sun first announced J2ME at the
JavaOne Conference, an early version of the KVM was made available
to attendees (preloaded on a Palm V that they could buy as a show spe-
cial). The KVM soon found its way onto the Internet, causing consider-
able excitement in both the Palm and Java development communities.
Finally, there was a way to run Java on a mainstream personal digital
assistant (PDA) with promises of more device support to come. It
makes sense, then, for us to spend some time looking at the KVM
before exploring J2ME configurations or profiles in any detail.

The Spotless System

Development of the KVM started a number of months before the
JavaOne Conference. In fact, the KVM originated as a project in Sun
Laboratories, the research arm of Sun Microsystems. This progenitor of
the KVM was known as the Spotless project, and its goal was to write a
fully functional Java runtime environment—the Spotless System—for
the Palm series of connected organizers.

Complete details about the Spotless System are found in a Sun Labs
technical report published in February 1999, which is available online
at www.sun.com/research/spotless. We will summarize the main points
here, but we encourage you to read the full report if the history of the
KVM interests you.

The primary motivation for the development of the Spotless System
was to create a small but complete Java execution engine that was suit-
able for use on small devices. The emphasis was on size, not speed, and
on the portability of the execution engine source code.

The Spotless System was not the first attempt at getting Java to run on
small devices. Sun had three formal initiatives already: Java Card,
EmbeddedJava, and PersonalJava—that addressed the problem. We will
briefly summarize these initiatives later in this chapter, so for now, all
we need to know is that the Spotless team found them all unsuitable for
a number of reasons. Thus, they developed a new runtime environment.

As we saw in the previous chapter, writing a Java virtual machine is not
difficult, nor is the resulting virtual machine particularly large. As both



Java 2 Micro Edition (J2ME) 83

we and the Spotless team discovered, the size of the Java runtime envi-
ronment derives mostly from its runtime libraries. The Spotless team
conducted extensive and detailed analyses of the Java 1.1 core run time
and concluded that it would be simpler to build a new, smaller set of
classes from scratch rather than trying to adapt the existing library.

The reasons are simple. There are too many classes and too many inter-
dependencies between classes. Untwining the classes and reworking
their innards is more complex than writing new classes based on the
runtime library specification.

By starting from scratch, then, the Spotless team was able to carefully
choose which classes to include in its own run time and even which
methods to include. The team also chose to merge certain classes and to
eliminate various subclasses, all in order to reduce the total number of
classes and their cumulative effect on the runtime size. This latter deci-
sion would prove to be particularly controversial, as we will see shortly.

The result was a complete runtime environment that could run in the
constrained setting of a Palm device (and in theory, other similar envi-
ronments). At some point, a decision was made to transform the
research project into the product that we now know as the KVM. The
Spotless project still continues as a separate research initiative, but it
and the KVM are evolving along different paths.

Early KVM Controversy

The first public release of the KVM was at the 1999 JavaOne Confer-
ence. After the initial excitement subsided, those who took a close look
at the KVM and tried to port their Java programs to it soon ran across a
number of important road blocks.

The most obvious limitation was program size. The static size of a
program—basically, the sum of the class files—was limited to 64K.
Runtime memory constraints were even more onerous. On a typical
Palm device that was available at the time, there was about 20K of run-
time memory available to an application after the virtual machine
started. These limitations were not inherent to the KVM but were
mostly due to the segmented memory architecture of Palm OS, which
we will describe in more detail in Chapter 8, “Java for Palm Connected
Organizers.” These restrictions have relaxed since then, but runtime
memory constraints are still limiting when compared to a typical desk-
top computer.




84

CHAPTER 4

A second road block was the decision not to implement the AWT. AWT
is a set of APIs that Java programs use in order to generate Graphical
User Interfaces (GUIs). Even Swing-based user interfaces eventually
use AWT, so AWT is extremely important for client programs. They felt,
however, that AWT was simply too large to work well in the restricted
environment of the KVM, so the KVM team avoided it altogether. They
understood, of course, that some kind of user interface library was nec-
essary, so they implemented their own user interface objects that were
simple and Palm-specific. Defining a cross-device user interface was
left for later and more formal specifications. In other words, users had
to be prepared to rewrite their user interface code whenever a formal
specification (in this case, the Mobile Information Device Profile that
we will discuss in Chapter 6) was defined and implementations of it
were available.

kAWT: AWT for the KVM

Early adopters of the KVM were quite disappointed with the limited set of user
interface components that it provided and proceeded to build their own set of
components called kKAWT (modeled after the AWT components with which they
were familiar). KAWT is discussed in Chapter 8 and is included on the CD-ROM for
this book.

The roadblock that caused the most controversy in the early days, how-
ever, was the Spotless team’s decision to move and/or rename methods
in the core classes. What it meant was that you could not take the logic
sections of a program—the parts not directly involved with the user
interface—and run them unchanged on J2SE. This situation somehow
seemed more offensive than just dropping methods from those classes,
because it broke the promise of Java compatibility.

The KVM Today

The KVM has been officially released as the reference virtual machine
for the first J2ME configuration, which we will discuss in the next
chapter. Developers can download the KVM from Sun Microsystems’
Web site (as part of the configuration) and compile it for the Palm, Win-
dows, or Solaris platforms (or port it to any other platform).



Java 2 Micro Edition (J2ME) 85

Although many changes were made to the KVM, the basic motivation
for its existence has not changed: to provide a complete Java runtime
environment for small devices. In other words, the KVM is a true Java
virtual machine as defined by The Java Virtual Machine Specification
(except for some specific, documented deviations that are necessary
for proper functioning on small devices):

Long integer and floating point datatypes are optional. This
makes sense, because operations involving these types often have to
be simulated in software on a small device. Floating point operations
are especially expensive without a dedicated coprocessor.

No object finalization. With no finalization, the garbage collector’s
job is made much simpler and less time-consuming.

No JNI support. The KVM has a native interface, of course, but this
interface is not like JNI, which is more complex because it is a
portable interface. In fact, the native methods in the KVM are com-
piled into the virtual machine and are not user installable.

Off-device class verification. Because class verification is an expen-
sive and time-consuming operation, the KVM team came up with a
way to move most of the work off the device and onto the desktop or
server computer, where the class files are compiled. This step is
referred to as preverification. All the device does is run a few simple
checks on a preverified class file in order to ensure that it was veri-
fied and is still valid.

Multidimensional arrays are optional. Few applications use multi-
dimensional arrays, so removing the necessary support saves a bit of
space.

No user-defined class loaders. The only class loader that is available
to applications running on the KVM is the system class loader pro-
vided by the KVM itself.

Features that are optional are defined in separate modules within the
KVM source code. A particular J2ME configuration defines the exact
set of features that it expects from a virtual machine, and that deter-
mines which of the optional modules will be included when a version
of the KVM is compiled for a particular platform.

Note that specific use of the KVM is not necessarily required, because
the KVM is a reference implementation of a Java virtual machine. Ven-
dors who are shipping a J2ME configuration only need to provide a




86 CHAPTER 4

virtual machine that meets the requirements of the configuration. Start-
ing with the KVM makes it easier, but there is nothing preventing a ven-
dor from writing his or her own virtual machine from scratch.

Related Technologies

If you are not a newcomer to Java, you probably realize that J2ME is
not Sun’s first attempt at making Java work on small devices. Java
Card, EmbeddedJava, and PersonalJava already existed by the time
that KVM made its first public appearance. How do these technologies
relate to J2ME?

Of the three, PersonalJava is the closest in spirit to J2ME. PersonalJava
defines a subset of the core Java APIs (an optimized version of the Java
runtime library) that can be combined with a fully-compliant (classic)
virtual machine in order to produce a smaller Java runtime environ-
ment that is suitable for use on consumer devices. PersonalJava also
defines some new APIs—of which the most important is the Truffle
Graphical Toolkit, which defines user interfaces with a customizable
look-and-feel (such as the Touchable look-and-feel for touch-screen
devices). For more information about PersonalJava, refer to http://
java.sun.com/products/personaljava.

The biggest difference between PersonalJava and the Micro Edition is
that the latter supports a much broader set of devices, mostly by allow-
ing specific changes to the Java virtual machine. As such, PersonalJava
is really a subset of J2ME and is in fact being redefined as a J2ME pro-
file, the Personal Profile. We will discuss profiles in Chapter 6.

If PersonalJava is being folded into J2ME, what about EmbeddedJava?
At first glance, PersonalJava and EmbeddedJava seem similar. In fact,
EmbeddedJava seems even more flexible than PersonalJava, because
every class, method, and field of the Java runtime library is optional.
Unlike PersonalJava or even J2ME, however, EmbeddedJava is specifi-
cally meant to be an unexposed, embedded runtime environment. In
other words, only the implementer of the embedded system can use
and write applications for the EmbeddedJava environment. Embedded-
Java defines a closed system—a black box whose contents and imple-
mentation are unknown and inaccessible to third-party developers.
EmbeddedJava does not affect and is not affected by the Micro Edition.



Java 2 Micro Edition (J2ME) 87

For more information about EmbeddedJava, refer to http://java.sun.
com/products/embeddedjava.

The remaining technology similar to J2ME is Java Card, an architecture
for running Java programs on smart cards. A smart card is a set of elec-
tronic circuits—some memory with or without a central processing
unit (CPU)—packaged as a thin device that looks like a standard credit
card. Smart cards are constrained in the amount of data that they can
store—too constrained even for the J2ME. To deal with these con-
straints, a significant number of changes had to be made to Java. Not
only does Java Card define its own set of APIs, but a Java Card virtual
machine even has a specification separate from The Java Virtual
Machine Specification. As you can see, then, J2ME and Java Card have
different goals. For more information about Java Card, refer to http://
java.sun.com/products/javacard.

To summarize, then, both Java Card and EmbeddedJava can be viewed
as complementary technologies to J2ME, while PersonalJava is being
folded into J2ME. For a starting point on all of these technologies, refer
to the Java Consumer and Embedded Technologies page at http://java.
sun.com/products/OV_embeddedProduct.html.

Chapter Summary

In this chapter, we introduced J2ME, a new platform for Java program-
ming. We outlined what goes into J2ME and how it compares to exist-
ing Java technologies. We also spent a bit of time on the history of the
KVM, which is a key part of J2ME. We can now move on to examining
J2ME configurations and profiles.







